每日练习
2015年江苏公务员考试行测数学运算每日一练(7)
http://www.jiangsugwy.org/ 2014-10-10 来源:江苏公务员考试网
1.某单位今年一月份购买5包A4纸、6包B5纸,购买A4纸的钱比B5纸少5元;第一季度该单位共购买A4纸15包、B5纸12包,共花费510元;那么每包B5纸的价格比A4纸便宜( )
A.1.5元 B.2.0元 C.2.5元 D.3.0元
2.某商场开展购物优惠活动:一次购买300元及以下的商品九折优惠;一次购买超过300元的商品,其中300元九折优惠,超过300元的部分八折优惠。小王购物第一次付款144元,第二次又付款310元。如果他―次购买并付款,可以节省多少元?( )
A.16 B.22.4 C.30.6 D.48
3.有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?( )
A.7 B.10 C.15 D.20
4.小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,问小张的车速是小王的几倍?( )
A.1.5 B.2 C.2.5 D.3
5.某次抽奖活动在三个箱子中均放有红、黄、一绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑、白除外)的得三等奖。问不中奖的概率是多少?( )
A.在0~25%之间 B.在25~50%之间
C.在50~75%之间 D.在75~100%之间
2.【解析】A。统筹优化问题。由题意,第一次付款144元可得商品原价为160元;第二次付款为310元可得原价为350元。故总价510元,按照优惠,需付款300×0.9+210×0.8=438(元),节省了454-438=16(元)。
3.【解析】B。最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。
4.【解析】B。行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y,;第二次相遇时两人走了4个全长,小张走了2y,小王走了x-y;由比例法x÷y=2y÷(x-y),解得x=2y,故两人速度比为2:1。
5.【解析】C。概率问题。中奖概率为(3/4)3+C13×(1/8)×(1/4)2+C23×(1/8)2×(1/4)=117÷256<50%,故不中奖的概率略大于50%。
A.1.5元 B.2.0元 C.2.5元 D.3.0元
2.某商场开展购物优惠活动:一次购买300元及以下的商品九折优惠;一次购买超过300元的商品,其中300元九折优惠,超过300元的部分八折优惠。小王购物第一次付款144元,第二次又付款310元。如果他―次购买并付款,可以节省多少元?( )
A.16 B.22.4 C.30.6 D.48
3.有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?( )
A.7 B.10 C.15 D.20
4.小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,问小张的车速是小王的几倍?( )
A.1.5 B.2 C.2.5 D.3
5.某次抽奖活动在三个箱子中均放有红、黄、一绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑、白除外)的得三等奖。问不中奖的概率是多少?( )
A.在0~25%之间 B.在25~50%之间
C.在50~75%之间 D.在75~100%之间
江苏公务员考试网(www.jsgwy.com.cn)参考答案解析 题目或解析有误,我要纠错。
1.【解析】C。题可采用方程法。设一包A4纸价格为x元,一包B5价格为y元。由题意得:6y-5x=5,15x+12y=510,解得x=20,y=175,故每包B5纸比A4纸便宜2.5元。
2.【解析】A。统筹优化问题。由题意,第一次付款144元可得商品原价为160元;第二次付款为310元可得原价为350元。故总价510元,按照优惠,需付款300×0.9+210×0.8=438(元),节省了454-438=16(元)。
3.【解析】B。最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。
4.【解析】B。行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y,;第二次相遇时两人走了4个全长,小张走了2y,小王走了x-y;由比例法x÷y=2y÷(x-y),解得x=2y,故两人速度比为2:1。
5.【解析】C。概率问题。中奖概率为(3/4)3+C13×(1/8)×(1/4)2+C23×(1/8)2×(1/4)=117÷256<50%,故不中奖的概率略大于50%。
免费学习资源(关注可获取最新开课信息)